Course Outcomes - Program Outcomes (COPO) Mapping

For BSc Life Science (NEP)

Life Science has three components:

- I. BSc LIFE SCIENCE BOTANY COMPONENT
- II. BSc LIFE SCIENCE ZOOLOGY COMPONENT
- III. BSc LIFE SCIENCE CHEMISTRY COMPONENT

Undergraduate Curriculum Framework (UGCF)

National Education Policy (NEP)

The Preamble of the Undergraduate Curriculum Framework-2022 underlines the historical perspective, philosophical basis, and contemporary realities of higher education as enshrined in the National Education Policy 2020 and endeavours to synchronize these cornerstones while charting the road ahead for the state of higher education.

ABBREVIATIONS / NOMENCLATURE

Sno.	Nomenclature	Description	Aggregate Courses
1.	PO	Program Outcome	PO1, PO2, PO3, PO4, PO5, PO6, PO7,
			PO8
2.	CO	Course Outcome	CO1, CO2, CO3, CO4, CO5, CO6, CO7
3.	DSC	Core Courses	DSC1, DSC2, DSC3, DSC4.
4.	DSE	Discipline Specific	DSE1, DSE2
		Electives	

I. BSc LIFE SCIENCE BOTANY COMPONENT

PROGRAM OUTCOMES (PO): BSc LIFE SCIENCE BOTANY COMPONENT $\mbox{UGCF (NEP)}$

Program Outcomes (PO): B.Sc. Life Sciences (Botany)	Statements
PO1	Students of the B.Sc. Life Sciences programme will learn to use scientific logic as they explore a wide range of contemporary subjects spanning various basic and applied aspects life sciences
PO2	Students will appreciate the biological diversity of plant and animals and compounds in them to be able to describe/explain the processes used by microorganisms for their replication, survival, and interaction with their environment, hosts, and host populations. They will become aware of the important role of plant and animals in ecosystem functioning
PO3	Students will gain knowledge of various biotechnological applications of plants and animals and will learn of industrially important natural products produced by them.
PO4	Students will become familiar with scientific methodology, hypothesis generation and testing, design and execution of experiments. Students will develop the ability to think critically and to read and analyze scientific literature.
PO5	Students will acquire and demonstrate proficiency in good laboratory practices in biological sciences and be able to explain the theoretical basis and practical skills of the tools/technologies commonly used to study this field.
PO6	Students will develop proficiency in the quantitative skills necessary to analyze biologicalproblems (e.g., arithmetic, algebra, and statistical methods as applied to biology)
PO7	Students will develop strong oral and written communication skills through the effective Presentation of experimental results as well as through seminars.
PO8	Graduates of the B.Sc. programme in Life Sciences will make the students understand and evaluate the impact of new research discoveries in the life sciences, and will be able to stimulate to think on wide range of careers, including biological and medical research in higher education institutions as well as careers in public and global

health,	scientific	writing,	environmental	organizations,	and	food,
pharma	ceuticals a	and bioted	chnology industr	ries.		

Course Outcomes (CO): BSc LIFE SCIENCE BOTANY COMPONENT

SEMESTER I:

DSC1: Plant Diversity & Systematics

Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement
2162521101	DSC1: Plant Anatomy and	CO1	This course will be able to impart basic knowledge and understanding of the diversity of plants and microbes
	Embryology	CO2	the possible relationships between each group
		CO3	their general characteristics
		CO4	approaches used for identification and classification of various groups of plants

Papers		SEMESTER I: COPO MAPPING							
		Program Outcome : PO							
	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
	Outcome:								
	CO								
	CO1	✓	✓						
DSC1									
	CO2	✓	✓						
	CO3	✓	✓						
	CO4	✓	✓						✓

SEMESTER II:

DSC2: Genetics and Molecular Biology

Unique	Name of the	Course	G ₄ ,
Paper	Paper	Outcome:	Statement
Code		CO	
2162521201	DSC2: Genetics		understand the fundamentals of Mendelian
	and Molecular		inheritance and non-Mendelian inheritance.
	Biology	CO1	
		CO2	describe the concepts of linkage and crossing
			over and their usage in constructing genetic
			maps.
		CO3	Gain knowledge about chromosomal
			aberrations and mutations.
		CO4	Become familiar with structure and function of
			nucleic acids with reference to replication,
			transcription and translation.
		CO5	understand the mechanisms of gene regulation

Papers	SEMESTER II: COPO MAPPING								
		Program Outcome : PO							
	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
	Outcome:								
	CO								
	CO1	✓	✓						
DSC2									
	CO2	✓	✓						✓
	CO3	✓	✓						✓
	CO4	✓	✓						✓
	CO5	✓	✓						✓

SEMESTER III:

DSC3: Plant Cell and Developmental Biology

Unique	Name of the	Course	_
Paper	Paper	Outcome:	Statement
Code		CO	
			On completion of the course, the students will
			become familiar with the structure and functions
2162522301	DSC3: Plant	CO1	of various components of plant cell
	Cell and		
	Developmental	CO2	understand the processes of cell growth and its
	Biology		regulation
		CO3	comprehend the structure, organization and
			functions of various tissues of the plant organs
			and conservation of plants
		CO4	get acquainted with the reproductive processes
			in the life cycle of angiosperms
		CO5	appreciate the interactions between the
			developmental pathways resulting in the
			differentiation of plant body
		CO6	Recognise the importance of plant
			developmental biology in the improvement

DSE1: Biostatistics & Bioinformatics for Plant Sciences							
2163012002	DSE1:	CO1	At the end of this course students will be able				
	Biostatistics &		to:use the various online databases and				
	Bioinformatics		resources for accessing biological data.				
	for Plant	CO2	Use the different methods of alignment of DNA,				
	Sciences		RNA and protein sequences and interpret the				
			significance of the same.				
		CO3	Understand the descriptive and inferential				
			statistical tests for interpretation of experimental				
			data				

Papers		S	SEMESTE				NG		
			Pro	ogram O	utcome:	PO			
	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
	Outcome:								
	CO								
	CO1	✓	✓						
DSC3									
	CO2	✓	✓						
	CO3	√	✓						✓
	CO4	✓	✓						✓
	CO5	✓	✓						✓
	CO6	✓							✓
DSE1	CO1	√			✓				✓
	CO2	✓			✓				✓
	CO3	✓			✓				✓

SEMESTER IV:

DSC4: Ecology and Evolution

Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement
2162512401	DSC4: Ecology and Evolution	CO1	After successful completion of the course the student shall have adequate knowledge about the basic principles of ecology and evolution.

	DSE2: Industrial and Environmental Microbiology						
2163012004	DSE2 : Industrial and	CO1	understand how microbiology is applied in manufacturing of industrial products				
	Environmental	CO2	know about design of bioreactors				
	Microbiology	CO3	understand the rationale in medium formulation, design for microbial fermentation, sterilization of medium and air				
		CO4	comprehend the techniques and the underlying principles in upstream and downstream processing				
		CO5	learn the occurrence, abundance and distribution of microorganism in the environment and their role in the environment and also learn different methods for their detection				
		CO6	understand the basic principles of environment microbiology and application of the same in solving environmental problems - waste water treatment and bioremediation				
		CO7	comprehend the various methods to determine the quality of water				

Papers	SEMESTER IV: COPO MAPPING								
		Program Outcome : PO							
	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
	Outcome:								
	CO								
	CO1	✓							✓
DSC4									
DSE2	CO1	✓	\checkmark						✓
	CO2		✓						✓
	CO3	✓	✓						✓

CO4	✓				√
CO5	✓	✓			√
CO6	✓				✓
CO7	√	√			/
CO7	•	·			, ,

II. B.Sc. LIFE SCIENCE ZOOLOGY COMPONENT

PROGRAM OUTCOMES (PO): BSc LIFE SCIENCE ZOOLOGY COMPONENT

Program Outcomes (PO): B.Sc. Life Science (Zoology)	Statements
PO1	Students enrolled in B.Sc. (Program) Life Sciences will study and acquire complete knowledge of disciplinary and allied biological sciences. At the end of graduation, they would have expertise which will provide them competitive advantage in pursuing higher studies from India and abroad or seek jobs in academia, research or industries.
PO2	Students should be able to identify, classify and differentiate in types of chordates and nonchordates based on their morphological, anatomical and systemic organization. This will create a curiosity and awareness among them to explore the animal diversity and take up wildlife photography or wildlife exploration as a career option. The procedural knowledge about identifying and classifying animals will help students professional advantages in teaching, research and taxonomist jobs in various Government organizations, such as Zoological Survey of India or National Sanctuaries.
PO3	Acquired practical skills in biochemistry and biotechnology can be used in pursuing career as a scientist in pharmaceutical industry in India or abroad.
PO4	Students will be gaining basic experimental skills in genetics, biotechnology, qualitative and quantitative microscopy, and also enzymology that will give them an edge to pursue higher studies.
PO5	The skill enhancement courses will hone skills in rearing fish, bees and silk moth for generating self-employment.
PO6	Students can acquire expertise to join clinical and research laboratories for diagnostic assays, haematology, histopathology, staining procedures etc.
PO7	They will be able to examine and assess some basic physiological functions and interpret physiological charts.

COURSE OUTCOMES (CO): B.Sc. LIFE SCIENCE ZOOLOGY COMPONENT For NEP

SEMESTER 1:

DSC1: Diversity of Animals

Code	Name of the Paper	Course Outcome: CO	Statement
		CO1	Students will acquire knowledge of diversity of non -chordates and chordates
UPC-2232521101	DSC-1 : Diversity of Animals	CO2	The students will learn characteristics, morphotaxonomy, structural organization and physiological life system of diverse animal groups
		CO3	They will understand the economic importance of non-chordates and their importance in the ecosysytem
		CO4	It will also help them learn evolutionary relationships and phylogeny of invertebrates and vertebrates to structural as well as functional similarities

		SEMESTER I: COPO MAPPING						
Papers			Program Out	come :	PO			
	Course Outcome:	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	CO							

	CO1	✓			
DSC1	CO2				✓
	CO3	✓			
	CO4	✓			

DSC2: Cell a	Semester -II and Development biolo	ogy of Ani	imals
		CO1	Explain the structure and functions of cell organelles involved in diverse cellular processs
UPC-2232521201	DSC 2:Cell and	CO2	Know the evolution of different concepts in development biology.
O1 C-2232321201	Development biology of Animals	CO3	To understand the process of gamete formation from stem cells population to mature ova .Students will know the difference between spermatogenesis and oogenesis It will help the
		604	students to understand how polyspermy is avoided in animal kingdom
		C05	Learn the mechanism underpinning cellular diversity and specificity in animals
		C06	Learn the methods and tools related to developmental biology and understand processes of embryogenesis

	COPO MAPPING
Papers	SEMESTER II: COPO MAPPING

	Program Outcome: PO								
	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
	Outcome:								
	CO								
	CO1	✓							
DSC2	CO2	✓							
	CO3								
	CO4								
	C05								
	C06	✓							

Semester -III									
DSC3: Biochemistry: Basic concepts of Metabolism									
UPC:223252230	DSC3: Biochemistry: Basic concepts of Metabolism	CO1	The student would understand the properties of carbohydrates ,proteins, lipids and their importance in biological system.						
		CO2	Explain the biological mechanisms such as processes and control of bioenergetics and metabolism as chemical processes.						
		CO3	They will be able to comprehend the concept of enzyme, it's mechanism of action and regulation.						
		C04	Appreciate the importance of high energy compounds , electron transport chain , synthesis of ATP under aerobic and anaerobic conditions						
		C05	They will acquire knowledge related to the role of TCAcycle in central carbon metabolism, importance of anaplerotic reactions and redox balance.						

	COPO MAPPING									
Papers			SEMES	STER III: C	OPO MAPP	ING				
				Program Outo	come: PO					
	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7		
	Outcome:									
	CO									
	CO1			✓						
DSC3	CO2			✓						
	CO3				✓					
	CO4									
	CO5			✓	✓					

Semester -IV DSC4: Fundamentals of Human Physiology								
		CO1	By studying this course, students will be able to have an enhanced knowledge and appreciation of human physiology Recognize and identify principal tissue structures					
UPC:2232522401	DSC 4: Fundamentals of Human Physiology	CO3	and functions Better understand the functions of important physiological systems including the nervous system, muscular system, endocrine and reproductive system					
		CO4	Learn an integrative approach to understand how these separate systems interact to yield integrated physiological responses to maintain homeostasis in the body along with feedback mechanism.					

COPO MAPPING								
Papers		SEM	1ESTER IV:	COP	O MA	PPIN	$\overline{\mathbf{G}}$	
			Program C	Outcom	e: PO			
	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	Outcome:							
	CO							
	CO1							
DSC4	CO2	✓						
	CO3						✓	✓
	CO4		✓				✓	

DSE-1	: Wildlife Conservati	on and Ma	anagement
		CO1	By studying this course, students will be able to appreciate wildlife in general and realize its conservation and management in general
		CO2	Better understand the application of the principles of ecology and animal behaviour to formulate strategies for the management of wildlife populations and their habitats
UPC:2233012004	DSE-1:Wildlife Conservation and Management	CO3	Understand the management practices required to achieve a healthy ecosystem for wildlife population along with emphasis on conservation and restoration.
		CO4	Comprehend the key factors for loss of wildlife and important strategies for their in situ ex-situ conservation.
		CO5	Recognize the techniques for estimation remote sensing and global positioning tracking for wildlife.

C06 Gin knowledge abo
wildlife diseases and tl
quarantine policies.
C07 Perform critical thinking
,literature review,scientif
writing as well
presentations ar
participation in citize
science initiatives wi
reference to wildlife.

Papers	SEMESTER IV: COPO MAPPING for DSE 1								
		Program Outcome: PO							
	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
	Outcome:								
	CO								
	CO1		√						
DSE 1	CO2	✓							
	CO3		✓						
	CO4	✓							
	CO5		✓						
	CO6		✓						
	C07		✓						

DSE-2: PARASITOLOGY					
	CO1	By studying this course, students will be able to better understand the variation amongst parasites, parasitic invasion in animals; applicable to medical and agriculture aspects			
	CO2	Identify the stages of the life cycles of parasites and their respective infective stages. develop ecological model, on the base knowledge of population dynamics of parasites.			
UPC:2272201101 DSE 2	:Parasitology	Understand the concept of production and costs in detail			
	CO4	comprehend the different methods adopted by parasites to combat with the host immune system.			
	CO5	Develop skills and realize significance of diagnosis of			

	parasitic attack and treatment of patient or host.
C06	Analyse and interpret the case studies to highlight innovative researches, serendipities towards the advancement and enrichment of knowledge in the field of Parasitology.

Papers	SEMESTER IV: COPO MAPPING for DSE 2								
		Program Outcome: PO							
	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
	Outcome:								
	CO								
	CO1								
DSE 2	CO2	✓					✓		
	CO3						✓		
	CO4	✓					✓		
	CO5		✓						
	CO6		✓						

I. B. Sc. LIFE SCIENCE CHEMISTRY COMPONENT

Program Outcomes (PO): B.Sc(Prog) Life Science NEP

S.No.	Program Outcomes (PO): B.Sc Life Sciences (Chemistry)	Statements
1.	PO1	Knowledge: Students acquire theoretical knowledge and understanding of the fundamental concepts, principles and processes in main branches of chemistry, namely, organic chemistry, inorganic chemistry, physical chemistry, analytical chemistry and biochemistry. In depth understanding is the outcome of transactional effectiveness and treatment of specialized course contents. Width results from the choice of electives that students are offered.
2.	PO2	Laboratory Skills: A much valued learning outcome of this programme is the laboratory skills that students

	-	1 1 1 1 1 0
		develop during the course. Quantitative techniques
		gained through hands on methods opens choice of
		joining the industrial laboratory work force early on. The
		programme also provides ample training in handling
		basic chemical laboratory instruments and their use in
		analytical and biochemical determinations.
		Undergraduates on completion of this programme can
		cross branches to join analytical, pharmaceutical,
		material testing and biochemical labs besides standard
		chemical laboratories.
3.	PO3	Communication: Communication is a highly desirable
<i>J</i> .	103	attribute to possess. Opportunities to enhance students'
		ability to write methodical, logical and precise reports are
		inherent to the structure of the programme. Techniques
		that effectively communicate scientific chemical content
		to large audiences are acquired through oral and poster
		presentations and regular laboratory report writing.
4	PO4	Capacity Enhancement: Modern day scientific
		environment requires students to possess ability to think
		independently as well as be able to work productively in
		groups. This requires some degree of balancing. This life
		science chemistry programme course is designed to take
		care of this important aspect of student development
		through effective teaching learning process.
5	PO5	Portable Skills: Besides communication skills, the
		programme develops a range of portable or transferable
		skills in students that they can carry with them to their
		new work environment after completion of this life
		science programme course. These are problem solving,
		numeracy and mathematical skills- error analysis, units
		and conversions, information retrieval skills, IT skills
		and organizational skills. These are valued across work
		environments
		en i nominento

COURSE OUTCOMES (CO): B. Sc. LIFE SCIENCE CHEMISTRY COMPONENT

SEMESTER I:						
	DSC1: Basic concept of organic chemistry					
Code	Name of the Paper	Course Outcome: CO	Statement			
		CO1	The course enables the students to understand and explain the differentials behaviour of organic			

			compounds based on fundamental concepts learnt
		CO2	The students can understand the
			fundamental concepts of stereochemistry.
		CO3	Students can formulate the
2172511101	DSC1: Basic concept of organic chemistry		mechanisms of organic reactions by
2172511101			recalling and correlating the
			fundamental properties of the reactants involved
		CO4	Students can learn and identify many
			organic reactions and their
			mechanisms including electrophilic
			addition, nucleophilic addition,
			nucleophilic substitution, electrophilic substitution and
			rearrangement reactions

Papers	SEMESTER I: COPO MAPPING									
		Program Outcome : PO								
	Course	Course PO1 PO2 PO3 PO4 PO5								
	Outcome:									
	CO									
	CO1	✓	✓							
DSC1	CO2	✓	✓		✓					
	CO3		✓		✓					
	CO4	√	√	√	✓					

	SEMESTER II					
	DSC2: Chemical bonding and elements in biological system					
Code	Name of the Paper	Course	Statement			
	T (Will of the 1 wher	Outcome:	2 100022110221			
		CO				
		CO1	Students can understand the concept			
			of lattice energy using Born-Lande			
			and Born Haber cycle and their			
			applications			
		CO2	Students can rationalize the			
	conductivity of metals,					
	semiconductors and insulators based					
			on the band theory			

		CO3	Students can understand the
			importance and applications of
			chemical bonds, inter-molecular
			and intramolecular weak chemical
	DSC 2 : Chemical		forces and their effect on melting
2172521201	bonding and elements in		points, boiling points solubility and
	biological system		energetics of dissolution
		CO4	Students can know about the
			essential and non essential, trace
			and toxic metal ions and their role
			in biological system and effects of
			their deficiency. They will also
			learn their dose response
			relationship curves
		CO5	Students can understand active and
			passive transport and
			diagrammatically explain the
			working of the sodium-potassim
			pump in organisms and the factors
			affecting it
		CO6	Students can explain the sources and
			consequences of excess and
			deficiency of trace metals and learn
			about the toxicity of certain metal
			ions, the reason for the toxicity
		CO7	Students can understand the storage
			and transport of iron in bio-systems

Papers	SEMESTER II: COPO MAPPING									
		Program Outcome : PO								
	Course PO1 PO2 PO3 PO4 PO									
	Outcome:									
	CO									
	CO1	<								
Daga	CO2	√	✓		✓					
DSC2	CO3		✓		✓					
	CO4		✓	√	✓					
	CO5		✓	√	✓					
	CO6		✓	√	✓					
	CO7		√		✓					

SEMESTER II1: DSC3: Chemical energetics and equilibria

Code	Name of the Paper	Course Outcome : CO	Statement
		CO1	Students will be able to explain the
			laws of thermodynamics,
			thermochemistry and equilibria
	DSC3: Chemical energetics and equilibria	CO2	Students will be able to illustrate the
2172512202			concept of pH and its effect on the
2172512302			various physical and chemical
			properties of the compounds
		CO3	Students will be able to Explain and
			draw the concepts to predict
			feasibility of chemical reactions and
			to study the behaviour of reactions
			in equilibrium

DSE1: Polynuclear Hydrocarbons, Pharmaceutical Compounds, UV Visible & IR Spectroscopy

Code	Name of the Paper	Course Outcome : CO	Statement
2173522002	DSE 1: Polynuclear Hydrocarbons, Pharmaceutical Compounds, UV Visible & IR Spectroscopy	CO1	Students can understand the fundamentals of polynuclear hydrocarbons and heterocyclic compounds through the study of methods of preparation, properties and chemical reactions with underlying mechanism. Students can gain insight into the basic fundamental principles of IR and UV-Vis spectroscopic techniques.
		CO3	Students can use basic theoretical principles underlying UV-visible and IR spectroscopy as a tool for functional group identification in organic molecules.

Papers	SEMESTER III: COPO MAPPING								
		Program Outcome : PO							
	Course	Course PO1 PO2 PO3 PO4 PO5							
	Outcome:	Outcome:							
	CO	CO							
DSC3	CO1	✓	✓		✓				

	CO2	✓	✓	√	✓	
	CO3		✓	√	✓	
DSE1	CO1	✓	✓	√	✓	
	CO2	✓	✓	√	✓	
	CO3	✓	✓	√	✓	

SEMESTER IV:

DSC4: Chemistry of carboxylic acids and their derivatives, amines and heterocycles

Code	Name of the Paper	Course Outcome : CO	Statement
21725112401	DSC 4 : Chemistry of carboxylic acids and their derivatives,	CO1	Students can understand reactions of carboxylic acids, esters, amides, amines and diazonium salts
	amines and heterocycles	CO2	Understand the concept of protection and deprotection.
		CO3	Students can use the synthetic chemistry learnt in this course to do functional group transformations.
		CO4	Students can gain theoretical understanding of chemistry of heterocyclic compounds.

DSE2: Analytical methods in chemistry

Code	Name of the Paper	Course	
		Outcome	Statement
		: CO	
		CO1	Students can understand various
			sources of errors in chemical
			analysis.
		CO2	Students can learn about methods to
			minimize error.
		CO3	Students can understand basic
			principle of instrumentation (Flame
2173522008	DSE2: Analytical		Photometer, UV-vis
2173322000	methods in chemistry		spectrophotometer, Atomic
	memous in chemistry		Absorption spectrophotometer).

CO4	Students can apply the principles of analysis and instrumentation to analyse soil samples, soft drinks and synthetic mixtures provided in the laboratory
CO5	Students can learn basic principles of separation techniques (chromatography and solvent extraction) and apply them to separate mixtures.
CO6	Students can understand principles of Gravimetric analysis and apply them in determination of Ni ²⁺ and Al ³⁺
CO7	Students can analyse samples independently in the laboratory

	SEMESTER IV: COPO MAPPING							
Papers	Program Outcome : PO							
	Course	PO1	PO2	PO3	PO4	PO5		
	Outcome:							
	CO							
DSC4	CO1	✓	✓		√			
	CO2	<		√	✓			
	CO3		✓	✓	√			
	CO4	√			√			
	CO1		√	√		√		
Dana	CO2			√	✓			
DSE2	CO3	√	√	√				
	CO4	√	√		✓			
	CO5	√	√	√	√			
	CO6	✓	√	√				
	CO7		√	√	✓			